Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cerebellum ; 23(1): 56-66, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36633829

RESUMO

Cerebellar brain inhibition (CBI), a neural connection between the cerebellum and primary motor cortex (M1), has been researched as a target pathway for neuromodulation to improve clinical outcomes in various neurological diseases. However, conflicting results of anodal cerebellar transcranial direct current stimulation (acb-tDCS) on M1 excitability indicate that additional investigation is required to examine its precise effect. This study aimed to gather evidence of the neuromodulatory effect of acb-tDCS on the M1 using functional near-infrared spectroscopy (fNIRS). Sixteen healthy participants were included in this cross-over study. Participants received real and sham acb-tDCS randomly, with a minimum 1-week washout period between them. The anode and cathode were placed on the right cerebellum and the right buccinator muscle, respectively. Stimulation lasted 20 min at an intensity of 2 mA, and fNIRS data were recorded for 42 min (including a 4-min baseline before stimulation and an 18-min post-stimulation duration) using eight channels attached bilaterally on the M1. acb-tDCS induced a significant decrease in oxyhemoglobin (HbO) concentration (inhibitory effect) in the left (contralateral) M1, whereas it induced a significant increase in HbO concentration (excitatory effect) in the right (ipsilateral) M1 compared to sham tDCS during (p < 0.05) and after stimulation (p < 0.01) in a group level analysis. At the individual level, variations in response to acb-tDCS were observed. Our findings demonstrate the neuromodulatory effects of acb-tDCS on the bilateral M1 in terms of neuronal hemodynamics.


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Espectroscopia de Luz Próxima ao Infravermelho , Córtex Motor/fisiologia , Estudos Cross-Over , Cerebelo/fisiologia , Eletrodos , Potencial Evocado Motor/fisiologia
2.
Sci Rep ; 13(1): 6465, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081056

RESUMO

Drowsy driving is a common, but underestimated phenomenon in terms of associated risks as it often results in crashes causing fatalities and serious injuries. It is a challenging task to alert or reduce the driver's drowsy state using non-invasive techniques. In this study, a drowsiness reduction strategy has been developed and analyzed using exposure to different light colors and recording the corresponding electrical and biological brain activities. 31 subjects were examined by dividing them into 2 classes, a control group, and a healthy group. Fourteen EEG and 42 fNIRS channels were used to gather neurological data from two brain regions (prefrontal and visual cortices). Experiments shining 3 different colored lights have been carried out on them at certain times when there is a high probability to get drowsy. The results of this study show that there is a significant increase in HbO of a sleep-deprived participant when he is exposed to blue light. Similarly, the beta band of EEG also showed an increased response. However, the study found that there is no considerable increase in HbO and beta band power in the case of red and green light exposures. In addition to that, values of other physiological signals acquired such as heart rate, eye blinking, and self-reported Karolinska Sleepiness Scale scores validated the findings predicted by the electrical and biological signals. The statistical significance of the signals achieved has been tested using repeated measures ANOVA and t-tests. Correlation scores were also calculated to find the association between the changes in the data signals with the corresponding changes in the alertness level.


Assuntos
Condução de Veículo , Cromoterapia , Eletroencefalografia , Fadiga , Privação do Sono , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Masculino , Eletroencefalografia/métodos , Fadiga/diagnóstico , Fadiga/etiologia , Fadiga/terapia , Sono/fisiologia , Privação do Sono/complicações , Fases do Sono/fisiologia , Vigília/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Sonolência , Cor , Fototerapia/métodos , Cromoterapia/métodos , Córtex Cerebral
3.
Biomed Opt Express ; 10(9): 4684-4710, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31565519

RESUMO

In this study, 3-dimensional (3-D) enhanced brain-function-map generation and estimation methodology is presented. Optical signals were modelled in the form of numerical optimization problem to infer the best existing waveform of canonical hemodynamic response function. Inter-channel activity patterns were also estimated. The estimation of activation of inter-channel gap depends on the minimization of generalized cross-validation. 3-D brain activation maps were produced through inverse discrete cosine transform. The proposed algorithm acquired significant results for 3-D functional maps with high resolution, in comparison with that of 2-D functional t-maps. A comprehensive analysis by exhibiting images corresponding to several layers has also been appended.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...